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Part 3: RESISTANCE MODELS 
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List of most important symbols: 
 
Rm bending strength 
Em bending MOE 
ρden density 
Rt,0/90 tension strength 
Et,0/90 tension MOE 
Rc,0/90 compression strength 
Ec,0/90 compression MOE 
Rv shear strength 
Gv shear modulus 
Rh,0/90 embedding strength 
σ  stress 
ε  strain 

tE  tension MOE 

cE  compression MOE 

cR  compression strength 

ycR ,  asymptotic final compression strength 

tR  tension strength 

uε  ultimate strain 
)(tS  load history 

ω  humidity 
τ  temperature 
T  time 
α  strength modification function 

Dα , κα  damage state  
δ  stiffness modification function 

0R  failure stress under short term ramp loading 

MX  model uncertainty 
x̂  tests data 
i  strength indicator 
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3.5.1 Introduction 
 
Timber is a rather complex building material. Its properties are highly variable, spatially and 
in time. In structural engineering, material properties of timber are the stress and stiffness 
related properties of standard test specimen under given (standard) loading and climate condi-
tions and the timber density. Timber is a graded material. Due to the grading process, the ma-
terial properties are associated with some control scheme, whereas only the so-called refer-
ence material properties are considered explicitly. The so-called other material properties are 
only assessed implicitly. The distinction between reference properties and other properties is 
made as illustrated in Figure 1. The bending strength Rm, the bending modulus of elasticity Em 
and the timber density ρden are referred to as the reference material properties. 
 

Reference Material 
Properties 

Other Material 
Properties 

Rm = bending strength Rt,0/90 = tension strength 
Em = bending MOE Et,0/90 = tension MOE 
ρden = density Rc,0/90 = compression strength 

 Ec,0/90 = compression MOE 
 Rv = shear strength 
 Gv = shear modulus 
 Rh,0/90 = embedding strength 

Figure 1: Reference material properties and other material properties.  
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Figure 2: Outline of the modelling of timber material properties. 
 
When modelling timber material properties in a structure, i.e. at any generic point, in time and 
in space, several issues have to be taken into account. As illustrated in Figure 2 the corner-
stone of the modelling of timber material properties are the reference material properties un-
der test conditions. The material property of interest at any generic point may deviate in terms 
of type (‘other material properties’), of dimensions (‘scale’) and of specific loading and cli-
mate conditions (‘time (load/moisture)’).  
 
The models in this model code relate to solid structural timber and are predominantly based 
on test programs and investigations considering European and North American softwoods. 
For some other softwoods and especially for hardwood the underlying assumptions are less 
appropriate.  
 
 



JCSS           August, 2006 

Page 4 of 16 

3.5.2 Basic Model 
 
3.5.2.1 Stress-strain relationship 

 

Figure 3: Stress-strain relation according to Glos [1]. A simplified linear elastic-plastic stress-
strain curve is shown with thin line.  
 
In Figure 3 an idealised stress-strain relationship under axial load is shown for small clear 
timber specimens, according to Glos, [1]. In tension there is a linear relationship described by 
the modulus of elasticity tE . In compression the relation is described by the initial modulus of 
elasticity cE , the compression strength cR , the asymptotic final compression strength ycR , , 
the strain cε  at maximum stress and the ultimate strain uε . The following empirical relation is 
assumed:  
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Typical values for the parameters are:  

8.0/, ≈cyc RR    %2.18.0 −=cε   cu εε 3≈   7=N  
 
For structural timber, the force-deformation relationship can be different. 
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3.5.2.2 Basic Material Properties 
 
The reference properties of structural timber determined from standard tests are: 
- the bending strength tmR ,  in [MPa] and the 
- bending modulus of elasticity tmE ,  in [MPa], 

both measured on short-term standard test specimens evaluated according to ISO 8375 [3] 
with symmetrical 4-point bending test, span ( )hh ⋅⋅63 18  with mm 150≈h , ramp load test 
duration s 120300 ± , specimen conditioned at nominal climate, C220 °± , 565± % rela-
tive humidity. 

- timber density tden,ρ  in [kg/m3], measured according to ISO 3131 [4] from a disc of full 
cross section, free of knots and resin pockets. 

 
The reference material properties are sensitive to the deviations from the standard test condi-
tions. The reference material properties of a cross section in situ (i.e. at any generic point in 
time and in space) are estimated as:  
 
Bending moment capacity in situ, mR : 

( )( ) 0,R ,,, mm TSExR τωα=  (7) 

Bending MOE in bending in situ, mE : 

( )( )( )TSExEE mm ,,,1/0, τωδ+=  (8) 

Density in situ, denρ : 

0,denden ρρ =  (9) 

where  
( )TSEx ,,, τω  is the exposure of the structure to loads S, humidity ω  and temperature τ , in 

the time interval ],0[ T  
( )( ).Exα  is a strength modification function, in general defined for a particular set of 

exposures 
( )( ).Exδ  is a stiffness modification function, in general defined for a particular set of 

exposures. 
 

0,mR , 0,mE  and 0,denρ  are the bending moment capacity, the modulus of elasticity and the den-
sity of a cross section under test conditions. It is assumed that these properties are equal to the 
properties of the corresponding standard test specimen; i.e. it is assumed that within test 
specimen and within structural components these properties are constant. 
 
Other material properties are estimated based on the reference material properties, see next 
section.  
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3.5.3 Probabilistic model 
 
3.5.3.1 Expected values and COV 
 
Expressions for the expected values [.]E  and the coefficient of variation [.]COV  are given in 
Table 1 for Nordic softwood.  
 
Table 1: Relation reference properties – other properties.  

Property Expected Values [ ]E X  Coefficient of variation ][XCOV  

Tension strength par. to the 
grain, 0,tR : 

 
[ ] [ ]mt RERE 6.00, =  

 
[ ] [ ]mt RCOVRCOV 2.10, =  

Tension strength perpendicu-
lar to the grain, 90,tR : 

 
[ ] [ ]dent ERE ρ015.090, =  

 
[ ] [ ]dent COVRCOV ρ5.290, =  

MOE - tension par. to the 
grain, 0,tE : 

 
[ ] [ ]mt EEEE =0,  

 
[ ] [ ]mt ECOVECOV =0,  

MOE - tension perpendicular 
to the grain, 90,tE : 

 
[ ] [ ] 30/90, mt EEEE =  

 
[ ] [ ]mt ECOVECOV =90,  

Compression strength paral-
lel to the grain, 0,cR : 

 
[ ] [ ] 45.0

0, 5 mc RERE =  
 

[ ] [ ]mc RCOVRCOV  8.00, =  
Compression strength per-
pendicular to the grain, 90,cR : 

 
[ ] [ ]denc ERE ρ 008.090, =  

 
[ ] [ ]denc COVRCOV ρ=90,  

Shear modulus, νG : [ ] [ ] 16/mEEGE =ν  [ ] [ ]mECOVGCOV =ν  

Shear strength, νR : [ ] [ ] 8.02.0 mRERE =ν   [ ] [ ]mRCOVRCOV =ν  

 
The relations are derived for standard test specimen properties tested under reference condi-
tions. However, it is assumed that the relations can be used at any level, i.e. for components of 
any size and/or for other climate and load conditions. 
 
3.5.3.2 Distribution types 
 
The distribution type and the recommended coefficient of variation (COV ) of the basic mate-
rial properties for European softwood are given in Table 2 as prior values corresponding to a 
number of tests equal to 10.  
 
Table 2: Probabilistic models for reference properties for structural timber.  
 Distribution COV  
Bending strength mR  Lognormal 0.25 

Bending MOE: mE  Lognormal 0.13 

Density denρ  Normal 0.1 

 
The distribution types for the other basic material properties are given in Table 3.  
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Table 3: Distribution functions for other material properties for structural timber.  

Property Distribution Function 

Tension strength par. to the grain, 0,tR : Lognormal 

Tension strength perpendicular to the grain, 90,tR : 2-p Weibull 

MOE - tension par. to the grain, 0,tE : Lognormal 

MOE - tension perpendicular to the grain, 90,tE : Lognormal 

Compression strength parallel to the grain, 0,cR : Lognormal 

Compression strength perpendicular to the grain, 90,cR : Normal 

Shear modulus, νG : Lognormal 

Shear strength, νR : Lognormal 

 
3.5.3.3 Correlation coefficients 
 
Table 4: Correlation coefficient matrix.  

 mE  denρ  0,tR  90,tR  0,tE  ,90tE  0,cR  90,cR  νG  νR  

mR  0.8 0.6 0.8 0.4 0.6 0.6 0.8 0.6 0.4 0.4 

mE   0.6 0.6 0.4 0.8 0.4 0.6 0.4 0.6 0.4 

denρ    0.4 0.4 0.6 0.6 0.8 0.8 0.6 0.6 

0,tR     0.2 0.8 0.2 0.5 0.4 0.4 0.6 

90,tR      0.4 0.4 0.2 0.4 0.4 0.6 

0,tE       0.4 0.4 0.4 0.6 0.4 

90,tE        0.6 0.2 0.6 0.6 

0,cR         0.6 0.4 0.4 

90,cR          0.4 0.4 

νG           0.6 

 
The relations to other material properties are given in Table 1. Indicative values of the corre-
lation coefficient matrix are given in Table 4. The values in Table 4 are quantified by judg-
ment (COST E24 [2]), such that 0.8 ↔  high correlation, 0.6 ↔  medium correlation, 0.4 ↔  
low correlation, 0.2 ↔  very low correlation. 
 
3.5.3.4 Failure types 
Failure modes related to the different strength parameters are characterized as brittle, ductile 
or ductile with reserve strength, see Table 5. 
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Table 5: Failure types for different failure modes for structural timber. 1) for lower grade tim-
ber the failure mode can be brittle. 

Property Failure type 

Bending, mR : Ductile1)  

Tension parallel to the grain, 0,tR : Brittle 

Tension perpendicular to the grain, 90,tR : Brittle  

Compression parallel to the grain, 0,cR : Ductile  

Compression perpendicular to the grain, 90,cR : Ductile with reserve 

Shear, νR : Brittle  

 
3.5.3.5 Strength and Stiffness Modification Functions 
 
Values for the strength modification function ( ).α  are quantified for discrete exposures 

( )TSEx ,,, τω  as specified in Table 6. The particular sets of exposures are defined as in EC 5 
[5]; different load duration classes and different service classes (sc) depending on the ex-
pected moisture content (mc) of the timber (sc 1, 2, 3 is associated with mc <12%,  <20%, 
>20%). The values for ( ).α  are taken from EC 5. 
 
Table 6: Strength modification function table for constant loads with different duration. 

sc Permanent 
( 10>T years) 

Long term 
( 5.010 >> T years) 

Medium term  
( 25.06 >> T month) 

Short term  
( 1<T week) 

Instantaneous 
 

1/2 =α 0.6 =α 0.70 =α 0.80 =α 0.9 =α 1.1 
3 =α 0.5 =α 0.55 =α 0.65 =α 0.7 =α 0.9 
 
Values for the stiffness modification function ( ).δ  are quantified for discrete exposures 

( )TSEx ,,, τω  as specified in Table 7. The particular sets of exposures are defined as in EC 5 
[5]. The values for ( ).δ  are taken from EC 5.  
 
Table 7: Stiffness modification function table for constant loads with different duration. 

sc Permanent 
( 10>T years) 

Long term  
( 5.010 >> T years) 

Medium term  
( 25.06 >> T  month) 

Short term  
( 1<T week) Instantaneous

1 =δ 0.6 =δ 0.5 =δ 0.25 =δ 0.0 =δ 0.0 
2 =δ 0.8 =δ 0.5 =δ 0.25 =δ 0.0 =δ 0.0 
3 =δ 2.0 =δ 1.5 =δ 0.75 =δ 0.3 =δ 0.0 
 
3.5.3.6 Glued laminated timber 
 
The stochastic model for glued laminated timber is related to the strength parameters for 
whole structural elements, and not to the strength parameters for the single laminates and the 
glue. In Table 8 a prior probabilistic model for the material strength properties is given corre-
sponding to a number of tests equal to 10. In Table 9 failure types for different failure modes 
are shown. 
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Table 8: Probabilistic models for properties for glued laminated timber. 
 Distribution COV  
Bending strength: mR  Lognormal 0.15 

Bending MOE: mE  Lognormal 0.13 

Tension strength par. to the grain: 0,tR  Lognormal  

Tension strength perpendicular to the grain: 90,tR  2-p Weibull  

MOE - tension par. to the grain: 0,tE  Lognormal  

MOE - tension perpendicular to the grain: 90,tE  Lognormal  

Compression strength parallel to the grain: 0,cR  Lognormal  

Compression strength perpendicular to the grain: 90,cR  Normal  

Shear modulus: νG  Lognormal  

Shear strength: νR  Lognormal  

Density: denρ  Normal 0.1 

 
 
Table 9: Failure types for different failure modes for glued laminated timber.  

Property Failure type 

Bending: mR  Brittle  

Tension parallel to the grain: 0,tR  Brittle 

Tension perpendicular to the grain: 90,tR  Brittle  

Compression parallel to the grain: 0,cR  Ductile  

Compression perpendicular to the grain: 90,cR  Ductile with reserve 

Shear: νR  Brittle  

 
3.5.3.7 Model Uncertainties for Different Ultimate Limit States 
 
The model uncertainties cover deviations and simplifications related to the probabilistic mod-
elling and the limit state equations. The reference properties are determined by standardized 
tests. Therefore, model uncertainties related to estimation of other material parameters (e.g. 
tension and compression strengths) have to be accounted for. Geometrical deviations from 
specified dimensions, durations of load and moisture effects (damage accumulation) also con-
tribute to model uncertainties if not explicitly accounted for in the probabilistic modelling. 
Furthermore, the idealized and simplified limit state equations introduce model uncertainties. 
In Table 10 values for model uncertainties are shown. The model uncertainty depends on the 
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limit state (bending or e.g. combined stress effects) and how much the actual condition devi-
ates from the standard test conditions.  
 
Table 10: Model uncertainties for component load bearing capacity.  

 Mean 
 

Standard 
deviation 

Distribution 
 

Without load duration effects 1 0.05 – 0.10 Lognormal 
With load duration effects, eq. (16)-(17) 1 0.10 Lognormal 
 
3.5.4 Refinements of the probabilistic model 
 
3.5.4.1 Modeling the Spatial Variation of Timber Properties 
 
Bending moment capacity 
Following a model proposed by Isaksson [6], the bending strength ijmR ,  at a particular point j 
in the component i of a structure/batch is given as: 

( )ijiijm vR χϖ ++= exp,  (10) 

where  
v  is the unknown logarithm of the mean strength of all sections in all components, see 

Figure 4 
iϖ   is the difference between the logarithm of the mean strength of the sections within a 

component i and v ; iϖ  is normal distributed with mean value equal to zero and stan-
dard deviation ϖσ  

ijχ  is the difference between the strength weak section j in the beam i and the value 

iv ϖ+ ; ijχ  is normal distributed with mean value equal to zero and standard deviation 

χσ . iϖ  and ijχ  are statistically independent. 
 
The bending strength ijmR ,  is the bending strength of a particular cross section. ijmR ,  is log-
normal distributed. 
 

i

ln(R )ij

���������� 
������
�

longitudinal direction
of the beam

ij

jx

 
Figure 4: Section model for the longitudinal variation of bending strength. 
 
It is assumed that the bending strength of a cross section is related with the bending strength 
of a test specimen tmR ,  as: 
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ϑ
tmm RR ,0, =  (11) 

where ϑ  is a constant depending on the applied bending test standard and the type of timber.  
 
The bending moment capacity 0,mR  is assumed to be constant within one section. The discrete 
section transition is assumed to be Poisson distributed, thus the section length X  follows  an 
exponential distribution with mean value λ/1 . A realization of X , jx  is illustrated in Figure 
4.  
 
For Nordic spruce the following information basis can be given (Isaksson [6]): The variation 
of the logarithm of the bending capacity )ln( 0,mR  is related by 40% to the variable ϖ  and by 
60% to the variable χ . The expected length of a section is λ/1 =480 mm. 
 
Table 11: ϑ -values for the estimation of the strength of weak sections (for Nordic Spruce). 
 EN US AUS 
ϑ = 1.05 1.03 1.02 
Note: ϑ -values should be used in connection with strength values in MPa. 
 
The different values for ϑ  given in Table 11 are due to the different definitions of bending 
strength of test specimen. The values are derived by simulations, see Köhler [7]. 
 
For the bending modulus of elasticity and the density no within component variation is as-
sumed. 
 
3.5.4.2 Duration of Load Effect 
 
The mechanism leading to strength reduction of a timber member under sustained load is re-
ferred to as creep rupture and is modelled by so-called cumulative damage models with the 
general form: 

( ) 10for         ,,),( 0 ≤≤= DD
D RtSh

dt
d ααα θ  (12) 

where t is time, Dα  is the damage state variable which commonly ranges from 0 (no damage) 
to 1 (failure), the function (.)h  contains parameters θ  that must be determined from experi-
ment observations, )(tS  is the applied stress and 0R  the failure stress under short term ramp 
loading. 
 
Three different models are proposed: 
 
1) The model referred to as the Gerhards model [8]: 
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2) The model referred to as the Foschi and Yao model [9]: 
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3) The model referred to as the Nielsen model [10]: 
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where καα  ,D  are the damage state variables, DDDDD dcba η,,,,  are model parameters fitted to 
experimental results e.g. as in Sørensen et al. [11] and Köhler and Svensson [12]. 
 
For model 1) and 2) a time invariant limit state function can be formulated: 

( )( )                 1)( TSXTg DMα−=  (16) 

where MX  is the model uncertainty, see Table 10. ))(( TSDα  at time T is obtained using the 
damage accumulation models 1) or 2) with the load time history TttS ≤≤0 ),( . 
 
For model 3) a time variant limit state function has to be used: 

( ) ( ){ }                   /)(/)(min)( 0
2

0
0

RtSXRtSTg M
Tt

κα−= −

≤≤
 (17) 

where MX  is the model uncertainty, see Table 10. 
 
 
3.5.4.3 Updating Scheme for the Basic Properties 
 
When information has been collected about the basic material properties the new knowledge 
implicit in that information might be applied to improve any previous (prior) estimate of the 
material property. Dependent on the type of information, it can be differentiated between di-
rect and indirect information. Direct information can e.g. be in the form of test results of a 
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material property. Indirect information can be in the form of measurements of some indicator 
of the property, e.g. information from grading indications. In the following updating is illus-
trated with three different methods based on Bayesian updating as described in JCSS Prob-
abilistic Model Code, section 3.0. 
 
 
3.5.4.4 Updating - Direct Information 
 
The bending strength mR  and the bending modulus of elasticity mE  are modelled by log-
normal distributed random variables which can be represented through the normal distributed 
random variables ( )mm RR ln* =  and ( )mm EE ln* = . All basic properties may be represented with 
the uncertain mean value M and standard deviation Σ  as illustrated by: 

  ( ) ( )RRmmm MNRRR Σ→= ,:exp **  (18) 

( ) ( )EEmmm MNEEE Σ→= ,:exp **  (19) 

( )ρρρ Σ,: MNden  (20) 

The parameters M and Σ  of *
mR , *

mE  and denρ  are quantified with a Normal-Inverse-Gamma-
2 distribution with the parameters vnsm ,,,  which is equivalent to the natural conjugate prior 
of a normal distribution with unknown mean and standard deviation. Given the parameters 

vnsm ,,,  the predictive distribution of *
mR , *

mE  and denρ  can be derived as: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
=

1
,,,ˆ n

n
s

mxTvsnmxF vX x  (21) 

where ( ).vT  is the student-t-distribution with v  degrees of freedom. 
 
The prior predictive distribution can be quantified with parameters ( ) ( )',',',',,, vnsmvnsm =  
 
New measurements on the material properties can be used for updating the parameters given 
above. For a sample of n  observations ( )nxxx ˆ,...,ˆ,ˆ 21 , the posterior predictive distribution 
function of X is obtained using the JCSS Probabilistic Model Code, section 3.0. 
 
 
3.5.4.5 Updating - Indirect Information I – machine grading 
 
In this section a simple model for updating the statistical parameters of the Lognormal distri-
bution for e.g. the bending strength of a given timber grade when new information becomes 
available in the form of machine grading results is described. 
 
The Lognormal distributed strength parameter R  is assumed to have a coefficient of variation 

RCOV . Then RX ln=  is Normal distributed with expected value XM  and standard deviation 
( )1ln 22 += RX COVσ . Xσ  is assumed to be known and XM  is assumed to be Normal distrib-

uted with expected value 0μ  and standard deviation 0σ . 
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When machine grading is based on a measured indicator i, typically related to the stiffness of 
a timber test specimen, the following relation between the indicator i and the strength parame-
ter can initially be fitted to tests results where both the indicator value and the strength R are 
measured:  

ε⋅⋅= 1
0

bRbi  (22) 

where 0b  and 1b  are constants and ε  is an error term which is assumed Lognormal distrib-
uted. ( )εln  is then Normal distributed and is assumed to have zero mean value and standard 
deviation ( )εσ ln . The parameters 0b , 1b  and ( )εσ ln  can be estimated from the tests using the 
Maximum Likelihood method.   
 
Next, it is assumed that n new observations niii ˆ,...,ˆ,ˆ

21  of the indicator is obtained from n 
specimens from a given timber grade. The mean value of these can be estimated as 

∑=
=

n

i
iini

1

ˆln1ln  and the updated (predictive) distribution function for RX ln=  is then Nor-

mal with expected value ''μ  and standard deviation '''σ : 
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The updated predictive distribution for the strength R  is then Lognormal with expected value 
( )2'' '''5.0''exp σμμ +=R  and standard deviation  ( ) 1'''exp 2''''' −= σμσ RR . 

 
 
3.5.4.6 Updating - Indirect Information II – calibration of grading rules 
 
The probabilistic model for bending strength described in this section can be used for machine 
graded timber and is based on the model described in Faber et al. [14]. The probabilistic 
model can be described by the following steps: 
 
For a given geographic region and a given type of specie (e.g. Nordic Spruce) an initial (prior) 
distribution function ( )xF

mR  can be established for the bending strength mR  for non-graded 
timber. The recommended distribution function is Lognormal. The statistical parameters in 
the distribution function can be obtained using e.g. the Maximum Likelihood method. For the 
identification of lower grades it is recommended to fit the initial (prior) distribution function  

( )xF
mR  to the data in the lower end (e.g. 30% of the data with lowest strengths); in order to 

obtain good models in the lower tail of the distribution function for the graded timber 
strength. This can be done using the Maximum Likelihood method, see e.g. in Faber et al. 
[14]. 
 
Machine grading is based on a measured indicator i, typically related to the stiffness of a tim-
ber test specimen. For each grading technique the following linear relation with the bending 
strength is assumed:  

ε++= raari 10)(  (24) 

where 0a  and 1a  are constants and ε  is the lack-of-fit quantity which is assumed Normal dis-
tributed with zero mean value and standard deviation εσ . The parameters 0a , 1a  and εσ  can 
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be estimated using the Maximum Likelihood method which also gives the statistical uncer-
tainty in form of standard deviations and correlation coefficients of the parameters 0a , 1a  and 

εσ . It is noted that in (22) the logarithms are fitted with a Lognormal distributed lack-of-fit 
error, whereas in (24) a linear model with a Normal distributed lack-of-fir error is used. 
 
After grading the updated (predictive) distribution function for the bending strength in grade 
no. j is obtained from:  

( ) ( )( )jUjLm
U
R bxibxRPxF

jm ,,,
≤≤≤=  (25) 

where jLb ,  and jUb ,  are lower and upper limits of the grading indicator i  for grading no. j. 

The updated distribution function ( )xFU
R jm ,

 can then be used in reliability analyses. A detailed 
description of the method can be found in Faber et al. [14] and Köhler [15]. 
 
3.5.5 Remarks 
 
The presented document does not cover all aspects of the design of timber structures. For tim-
ber structures, the structural performance depends to a considerable part on the connections 
between different timber structural members; connections can govern the overall strength, 
serviceability and fire resistance. Beside solid timber other timber materials are utilized in 
timber engineering.  
 
3.5.6 References 
 
[1] Glos P. (1981). Zur Modellierung des Festigkeitsverhaltens von Bauholz bei Druck-, 

Zug- und Biegebeanspruchung. Berichte zur Zuverlässigkeitstheorie der Bauwerke, SFB 
96, Munich, Germany. 

 [2] COST Action E 24, Reliability of timber structures. Several meetings and Publications, 
Internet Publication: http://www.km.fgg.uni-lj.si/coste24/coste24.htm, 2005. 

[3] ISO 8375: Solid timber in structural sizes – determination of some physical and me-
chanical properties. International Organisation for Standardisation, 1985. 

[4] ISO 3131: Wood - Determination of density for physical and mechanical tests. Interna-
tional Organisation for Standardisation, 1975. 

[5] EN 1995-1-1, Eurocode 5: Design of timber structures; part 1-1: general rules and rules 
for buildings. Comité Européen de Normalisation, Brussels, Belgium, 2004. 

[6] Isaksson T. Modelling the Variability of Bending Strength in Structural Timber. PhD-
thesis, Lund Institute of Technology, Report TVBK-1015, 1999. 

[7] Köhler, J. Reliability of Timber Structures. PhD-thesis, Swiss Federal Institute of Tech-
nology, submitted for approval, 2005. 

[8] Gerhards, C. C. Time-related effects of loads of wood strength. A linear cumulative 
damage theory. Wood Science. 19(2), pp. 139-144, 1979. 

[9] Foschi R. O. and Yao Z. C. Another look at three duration of load models. Proceedings 
of the 19th Meeting, International Council for Research and Innovation in Building and 
Construction, Working Commission W18 – Timber Structures, CIB-W18, Florence, It-
aly, 1986. 

[10] Nielsen L.F. Lifetime and Residual Strength of wood subjected to static and variable 
load – Part I +II. Holz als Roh- und Werkstoff. Vol. 58, pp. 81-90 and 141-152, 2000. 

[11] Sørensen J.D., Svensson S. & Stang B.D. Reliability-based calibration of load duration 
factors for timber structures. Structural Safety, Vol. 27, 2005, pp. 153-169, 2005. 

[12] Köhler J., Svensson S. Probabilistic Modeling of Duration of Load Effects in Timber 
Structures. Proceedings of the 35th Meeting, International Council for Research and In-



JCSS           August, 2006 

Page 16 of 16 

novation in Building and Construction, Working Commission W18 – Timber Structures, 
CIB-W18, Paper No. 35-17-1, Kyoto, Japan, 2002.  

[13] Raiffa H. and Schlaifer R. Applied statistical decision theory. John Wiley & Sons Ltd. 
Chichester, UK, 1960. 

[14] Faber M. H., Köhler J. and Sørensen, J. D. Probabilistic modelling of graded timber 
material properties. Journal of Structural Safety, 26(3), pp. 295-309, 2004. 

[15] Köhler J., Faber M. H. A probabilistic approach to cost optimal timber grading. Pro-
ceedings of the 36th Meeting, International Council for Research and Innovation in 
Building and Construction, Working Commission W18 – Timber Structures, CIB-W18, 
Paper No. 36-5-2, Colorado, USA, 2003. 

 
 


