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Bjerknes and Solberg cyclogenetic model (1921)
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Gust front, Bjerknes and Solberg (1921)
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Satellite image of an extra-tropical cyclone
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Atmospheric Boundary Layer
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Atmospheric Boundary Layer

Wind Loading Chain, Davenport (1961)

Extra-tropical cyclone
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Wind loading on structures
• Gust factor technique (ISO)
• Dynamic coefficient method (EC1)

MIXED CLIMATE

Climatological condition in which several wind 
phenomena of different nature occur (Gomes & 
Vickery 1977/1978):
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MIXED CLIMATE

Climatological condition in which several wind
phenomena of different nature occur (Gomes & 
Vickery 1977/1978):

• Extra-tropical depressions
• Tropical cyclones
• Tornadoes
• Downslope winds
• Thunderstorms
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Climatological condition in which several wind
phenomena of different nature occur (Gomes & 
Vickery 1977/1978):

• Extra-tropical cyclones
• Tropical cyclones
• Tornadoes
• Downslope winds
• Thunderstorms



10/04/2015

10

THUNDERSTORMS

Cumulus stage Mature stage Dissipative stage

Thunderstorm Project, Byers and Braham (1949)

THUNDERSTORMS

Downburst, Fujita (1981, 1985, 1990)
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THUNDERSTORMS

Downburst, Fujita (1981, 1985, 1990)

THUNDERSTORMS

Downburst, Fujita (1981, 1985, 1990)
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THUNDERSTORMS

1) Wind statistics and climate
2) Field detection and measurements
3) Modeling and simulation
4) Actions on structures

THUNDERSTORMS

In spite of this impressive amount of research, there is 
not yet a model of thunderstorms and their actions on 
structures like that for cyclones. 

1) The complexity of this phenomenon makes it difficult
to formulate physically realistic and simple models. 

2) Its short duration and small size make very few
measured data available.

3) There is still a great gap between the research in 
wind engineering and atmospheric sciences.
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THUNDERSTORMS

Wind actions on structures are still mostly determined 
by the model for cyclones developed half a century 
ago, at the most taking thunderstorms into account in 
the statistical evaluation of wind speed. 

This is not enough, because cyclones and 
thunderstorms are different phenomena that need 
separate assessments.

Thunderstorm monitoring, statistics 
and loading of structures

Wind monitoring

Reliability-based calibration of partial factors for 
the future evolution of EN 1990 for wind actions

CEN/TC250/WG7 – Delft, The Netherlands, February 17, 2015
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Programma di cooperazione transfrontaliera Italia /Francia “Marittimo” 

Aims of the project

1) Wind monitoring network and dataset
2) Wind field modelling and simulation
3)  Statistical analysis of wind climate
4)  Medium-term wind forecasting
5)  Short-term wind forecasting

“Wind & Ports” Project (2009-2012)

Solari at al., JWEIA, 2012..

Livorno 5

Savona 3
Bastia 5

La Spezia 4

Vado 3

Genova 2
v

Tyrrhenian Sea

22 anemometers

“Wind & Ports” Project (2009-2012)
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“Wind & Ports” Project (2009-2012)

“Wind & Ports” Project monitoring network
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Port of Livorno

“Wind & Ports” Project monitoring network

New London, Connecticut, 1938

Genova Vado

Savona

Livorno

La Spezia
Bastia

“Wind & Ports” Project (2009-2012)
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“Wind & Ports” Project (2009-2012)

Sampling frequency 10 Hz
(2 Hz in the Port of Bastia)

Livorno 5

Savona 4
Bastia 5

La Spezia 5

Vado 3

Genova 11
v

Tyrrhenian Sea

33 anemometers

“Wind & Ports” Project (2013-2014)
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Wind, Ports & Sea Project (2013-2015)

1) Strengthening the monitoring network
2) Detecting sea waves by sismometers
3) Improving existing wind forecasting
4) Forecasting sea waves

Burlando et al., Proc., 6th CWE, Hamburg, Germany, 2014
Burlando et al., Proc., 14th ICWE, Porto Alegre, Brasil, 2015

Livorno 7

Bastia 5

La Spezia 6

Genova 12

Tyrrhenian Sea

40 anemometers

“Wind, Ports & Sea” Project (2013-2015)

Savona 4

Vado 4

Ile-Rousse 2
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“Wind, Ports & Sea” Project (2013-2015)

Livorno 7

Bastia 5

La Spezia 6

Genova 12

40 anemometers
3 lidars

Savona 4

Vado 4

Ile-Rousse 2

Tyrrhenian Sea

Burlando et al., Proc., 14th ICWE, Porto Alegre, Brasil, 2015

LiDAR, Port of Savona
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Thunderstorm monitoring, statistics 
and loading of structures

Wind classification

Reliability-based calibration of partial factors for 
the future evolution of EN 1990 for wind actions

CEN/TC250/WG7 – Delft, The Netherlands, February 17, 2015

WIND PHENOMENA

1) Extra-tropical depressions (D)
stationary & Gaussian phenomena

2) Thunderstorms (T)
non-stationary & non-Gaussian phenomena
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WIND PHENOMENA

1) Extra-tropical depressions (D)
stationary & Gaussian phenomena

2) Thunderstorms (T)
non-stationary & non-Gaussian phenomena

3) Intermediate events (F)
stationary & non-Gaussian phenomena

EXTRA-TROPICAL DEPRESSIONS
Stationary & Gaussian

p60 m60 60V 22.46 m / s; V 15.03 m / s; G 1.49= = =
skewness 0.06; excess kurtosis 0.08= =
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THUNDERSTORMS
Non-stationary & non-Gaussian

p60 m60 60V 33.36 m / s; V 7.33 m / s; G 4.55= = =
skewness 1.20; excess kurtosis 2.60= =

INTERMEDIATE EVENTS
Stationary & non-Gaussian

p60 m60 60V 15.68 m / s; V 5.51m / s; G 2.85= = =
skewness 0.63; excess kurtosis 0.61= =
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SEMI-AUTOMATED EXTRACTION AND
CLASSIFICATION ALGORITHM

D, T, F 1 2 3 4 T ? F ?

D

T ? F

T

Data base

Quantitative control

Qualitative judgement

N N N N N

NY Y

Y Y

Y

Y

N
Y

De Gaetano et al., JWEIA, 2014.

SEMI-AUTOMATED EXTRACTION AND
CLASSIFICATION ALGORITHM

D, T, F 1 2 3 4

D
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T ? F ?

Synoptic Depresions

Thunderstorms

Intermediate Events
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Up10, Um10; storms

Up10>U*p10; Um10;
I10, G10, γ10, κ10; …

Um10 D Um10 T Um10 FUp10 D Up10 T Up10 F

max
Up10 D

max
Up10 T

max
Up10 F

max
Um10 D

Um10>U*m10; Up10;
I10, G10, γ10, κ10; …

SEMI-AUTOMATED EXTRACTION AND
CLASSIFICATION ALGORITHM

Independence criterion
3 days between depressions
4 hours between thunderstorms
1 day between intermediate 

events

Port Number of 
thunderstorm 

events

Anemometer 
Number

Number of 
thunderstorm 

records
Genoa 21 1 12

2 11
La Spezia 16 2 8

3 14
Livorno 27 1 12

2 7
3 12
4 5
5 12

All ports 64 - 93

THUNDERSTORMS (2011-2012)

Solari et al., Wind & Structures, 2014, submitted.
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Port of La Spezia – Thunderstorm October 25, 2011

CESI network lightning map

Port of La Spezia – Thunderstorm October 25, 2011

Doppler radar rainfall image
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Thunderstorm monitoring, statistics 
and loading of structures

Thunderstorm modelling

Reliability-based calibration of partial factors for 
the future evolution of EN 1990 for wind actions

CEN/TC250/WG7 – Delft, The Netherlands, February 17, 2015

( ) ( ) ( )v t v t v t′= +

( ) ( ) ( )vv t t v t′ ′= σ ⋅ɶ

THUNDERSTORM DECOMPOSITION

( )v t

Moving average period T = 30 s
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THUNDERSTORM DECOMPOSITION

( )v tσ

( )v t′ɶ

( ) ( ) ( )vv t t v t′ ′= σ ⋅ɶ

Moving average period T = 30 s

THUNDERSTORM DECOMPOSITION

( ) ( )
( )

v
v

t
I t

v t

σ
=

( )v t

( )v tσ
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( ) ( ) ( )vv t t v t′ ′= σ ⋅ɶ

THUNDERSTORM DECOMPOSITION

( ) ( )
( )

v
v

t
I t

v t

σ
=

( ) ( ) ( ) ( )vv t v t 1 I t v t′= + ⋅  ɶ

( )v t

( )v tσ

( )v t′ɶ

THUNDERSTORM DECOMPOSITION

Thunderstorm duration

( ) ( ) ( ) ( )vv t v t 1 I t v t′= + ⋅  ɶ

( ) ( ) maxt v t / vγ =
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THUNDERSTORM DECOMPOSITION

Thunderstorm duration

( ) ( ) ( ) ( )vv t v t 1 I t v t′= + ⋅  ɶ

Increasing time period ti
Mean value  116 s
Minimum value  22 s

Decreasing time period td
Mean value  132 s
Minimum value  27 s

Total duration tt
Mean value  248 s
Minimum value  57 s

THUNDERSTORM DECOMPOSITION

Port Anemometer 
number

Thunderstorms Synoptic

Genoa 1 0.12 0.18
2 0.12 0.18

Livorno 1 0.10 0.16
2 0.16 0.20
3 0.08 0.14
4 0.07 0.14
5 0.13 0.18

La Spezia 2 0.17 0.23
3 0.14 0.21

All ports 0.12 0.18

Average turbulence intensity

( ) ( ) ( ) ( )vv t v t 1 I t v t′= + ⋅  ɶ
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THUNDERSTORM DECOMPOSITION

Port Anemometer 
number

Thunderstorms Synoptic

Genoa 1 0.12 0.18
2 0.12 0.18

Livorno 1 0.10 0.16
2 0.16 0.20
3 0.08 0.14
4 0.07 0.14
5 0.13 0.18

La Spezia 2 0.17 0.23
3 0.14 0.21

All ports 0.12 0.18

Average turbulence intensity

( ) ( ) ( ) ( )vv t v t 1 I t v t′= + ⋅  ɶ

THUNDERSTORM DECOMPOSITION

( )v
0

1
I

ln h / z
=( )v

0

1
I

ln h / z
=

Thunderstorms Synoptic events

( ) ( ) ( ) ( )vv t v t 1 I t v t′= + ⋅  ɶ

I vI v

( )0h / z ( )0h / z
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THUNDERSTORM DECOMPOSITION

Reduced turbulence fluctuation

Mean value ∼∼∼∼ 0.0
Standard deviation ∼∼∼∼ 1.0
Skewness ∼∼∼∼ 0.0
Kurtosis ∼∼∼∼ 2.8

Reduced stochastic stationary Gaussian process

( ) ( ) ( ) ( )vv t v t 1 I t v t′= + ⋅  ɶ

THUNDERSTORM DECOMPOSITION

( ) ( ) ( ) ( )vv t v t 1 I t v t′= + ⋅  ɶ

Thunderstorms Synoptic events
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THUNDERSTORM DECOMPOSITION

( )
( )

v
5/3

v

6.868nL / v
nS n

1 10.302nL / v
=

+

Solari & Piccardo, PEM, 2001
raw PSD

best fit

( ) ( ) ( ) ( )vv t v t 1 I t v t′= + ⋅  ɶ

Integral length scale

Thunderstorms L v = 20-40 m
Synoptic events L v = 80-150 m

THUNDERSTORM DECOMPOSITION

Solari & Piccardo, 2001

Integral length scale

Thunderstorms L v = 20-40 m
Synoptic events L v = 80-150 m

( ) ( ) ( ) ( )vv t v t 1 I t v t′= + ⋅  ɶ

( )
( )

v
5/3

v

6.868nL / v
nS n

1 10.302nL / v
=

+
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THUNDERSTORM DECOMPOSITION

PSD averaged
over all thunderstorms, 
all anemometers
and all ports

( ) ( ) ( ) ( )vv t v t 1 I t v t′= + ⋅  ɶ

( )
( )5 3

18

1 27
v /

f
nS n

f
′ =

+
ɶ

Thunderstorm monitoring, statistics
and loading of structures

Thunderstorm response of structures

Reliability-based calibration of partial factors for 
the future evolution of EN 1990 for wind actions

CEN/TC250/WG7 – Delft, The Netherlands, February 17, 2015
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THUNDERSTORM-EXCITED RESPONSE 
Non-stationary & non-Gaussian

• Hybrid deterministic/stochastic methods
• Time/frequency domain solutions
• Empirical mode decomposition
• Wavelet and Hilbert transforms
• Evolutionary spectral densities

TRANSIENT PHENOMENA
Non-stationary & non-Gaussian

Earthquake                                Impact

Blast                                 Shock-waves
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EARTHQUAKES
Non-stationary & non-Gaussian

THUNDERSTORMS
Non-stationary & non-Gaussian

Solari, De Gaetano & Repetto (2013)
Thunderstorm response spectrum
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Single-Degree-Of-Freedom system v x

( ) ( ) ( ) ( ) ( )2
D

1
mx t cx t kx t f t v t Ac

2
+ + = = ρɺɺ ɺ

= reduced wind velocity
= peak wind velocity over
= peak  wind loading

= reduced displacement
= peak static displacement

Single-Degree-Of-Freedom system

( ) ( ) ( ) ( ) ( )2
D

1
mx t cx t kx t f t v t Ac

2
+ + = = ρɺɺ ɺ

( ) ( ) ˆu t v t / vτ=
v̂τ

2
D

ˆ ˆf 0.5 v Acτ = ρ

ˆx̂ f / kτ τ=

τ

x

( ) ( ) ˆd t x t / xτ=

v
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Single-Degree-Of-Freedom system

( ) ( ) ( ) ( ) ( )2
D

1
mx t cx t kx t f t v t Ac

2
+ + = = ρɺɺ ɺ

x

( ) ( ) ( ) ( )2 2 2
0 0 0d t 2 d t d t u t+ ξω + ω = ωɺɺ ɺ

= reduced wind velocity
= peak wind velocity over
= peak  wind loading

= reduced displacement
= peak static displacement

( ) ( ) ˆu t v t / vτ=
v̂τ

2
D

ˆ ˆf 0.5 v Acτ = ρ

ˆx̂ f / kτ τ=

τ

( ) ( ) ˆd t x t / xτ=

v

Single-Degree-Of-Freedom system

( ) ( ) ( ) ( ) ( )2
D

1
mx t cx t kx t f t v t Ac

2
+ + = = ρɺɺ ɺ

x

( ) ( ) ( ) ( )2 2 2
0 0 0d t 2 d t d t u t+ ξω + ω = ωɺɺ ɺ

( )d maxS d max d t= =   

THUNDERSTORM RESPONSE SPECTRUM

= reduced wind velocity
= peak wind velocity over
= peak  wind loading

= reduced displacement
= peak static displacement

( ) ( ) ˆu t v t / vτ=
v̂τ

2
D

ˆ ˆf 0.5 v Acτ = ρ

ˆx̂ f / kτ τ=

τ

( ) ( ) ˆd t x t / xτ=

v
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Maximum displacement

Equivalent static force

Single-Degree-Of-Freedom system

( ) ( ) ( ) ( ) ( )2
D

1
mx t cx t kx t f t v t Ac

2
+ + = = ρɺɺ ɺ

x

( ) ( ) ( ) ( )2 2 2
0 0 0d t 2 d t d t u t+ ξω + ω = ωɺɺ ɺ

( )d maxS d max d t= =   

THUNDERSTORM RESPONSE SPECTRUM

max dˆx x Sτ= ⋅

eq d
ˆf f Sτ= ⋅

v

Sd

n0

2ûτ

v̂
û

v̂τ
τ

=

( )v̂ max v t=   

( )v̂ max v tτ τ
 =  

= peak instantaneous wind velocity

= peak wind velocity over τ

THUNDERSTORM RESPONSE SPECTRUM

= peak reduced wind velocity
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Sd

n0

2ûτ

v̂
û

v̂τ
τ

=

( )v̂ max v t=   

( )v̂ max v tτ τ
 =  

= peak instantaneous wind velocity

= peak wind velocity over τ

THUNDERSTORM RESPONSE SPECTRUM

= peak reduced wind velocity

Sd

n0

2ûτ

v̂
û

v̂τ
τ

=

( )v̂ max v t=   

( )v̂ max v tτ τ
 =  

= peak instantaneous wind velocity

= peak wind velocity over τ

THUNDERSTORM RESPONSE SPECTRUM

= peak reduced wind velocity
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Sd

n0

2ûτ

Sd

T0

2ûτ

v̂
û

v̂τ
τ

=

( )v̂ max v t=   

( )v̂ max v tτ τ
 =  

= peak instantaneous wind velocity

= peak wind velocity over τ

= peak reduced wind velocity

THUNDERSTORM RESPONSE SPECTRUM

ξξξξ = 0.01

THUNDERSTORM RESPONSE SPECTRUM
Port of La Spezia
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ξξξξ = 0.01

THUNDERSTORM RESPONSE SPECTRUM
Port of La Spezia

ξξξξ = 0.01

THUNDERSTORM RESPONSE SPECTRUM
Port of La Spezia
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Port of La Spezia

ξξξξ = 0.01

Port of Genoa

Port of Livorno

average spectrum

THUNDERSTORM RESPONSE SPECTRUM
Port of La Spezia, Genoa and Livorno

THUNDERSTORM RESPONSE SPECTRUM
Port of La Spezia, Genoa and Livorno



10/04/2015

43

THUNDERSTORM RESPONSE SPECTRUM
Port of La Spezia, Genoa and Livorno

reduced fundamental frequencyfundamental frequency

RESPONSE SPECTRUM TECHNIQUE

1) Single-Degree-Of-Freedom (SDOF) System
identically coherent wind field

2) Multi-Degree-Of-Freedom (MDOF) System
multi-correlated wind field

Solari et al., Eng. Struct., 2014a,b under submission.
Solari et al., Proc., 14th ICWE, Porto Alegre, Brasil, 2015, submitted.
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Single-Degree-Of-Freedom system

( )d max 0S d n ,= ξ

( ) ( ) ( ) ( )2 2 2
0 0 0d t 2 d t d t u t+ ξω + ω = ωɺɺ ɺ

max dˆx x Sτ= ⋅
eq d

ˆf f Sτ= ⋅

v x

Multi-Degree-Of-Freedom system

( )d,eq eq,max 1 1S d n , ,= ξ δ

( ) ( ) ( ) ( )2 2 2
eq 1 1 eq 1 eq 1 eqd t 2 d t d t u , t+ ξ ω + ω = ω δɺɺ ɺ

( ) ( )max 1 d,eq 1x z z S g= ψ ⋅ ⋅ ( ) ( )eq d,eq
ˆf z f z Sτ= ⋅

Single-Degree-Of-Freedom system

( )d max 0S d n ,= ξ

( ) ( ) ( ) ( )2 2 2
0 0 0d t 2 d t d t u t+ ξω + ω = ωɺɺ ɺ

max dˆx x Sτ= ⋅
eq d

ˆf f Sτ= ⋅

x1

vN

x2

xN

v2

v1

u x
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Multi-Degree-Of-Freedom system

( )d,eq eq,max 1 1S d n , ,= ξ δ

( ) ( ) ( ) ( )2 2 2
eq 1 1 eq 1 eq 1 eqd t 2 d t d t u , t+ ξ ω + ω = ω δɺɺ ɺ

Limit solutions
1) Point-like structure (A →→→→ 0)

2) Infinitely large structure (A →→→→ ∞∞∞∞ )

Multi-Degree-Of-Freedom system

( )d,eq eq,max 1 1S d n , ,= ξ δ

( ) ( ) ( ) ( )2 2 2
eq 1 1 eq 1 eq 1 eqd t 2 d t d t u , t+ ξ ω + ω = ω δɺɺ ɺ
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Limit solutions
1) Point-like structure (A →→→→ 0)

2) Infinitely large structure (A →→→→ ∞∞∞∞ )

Multi-Degree-Of-Freedom system

( )d,eq eq,max 1 1S d n , ,= ξ δ

( ) ( ) ( ) ( )2 2 2
eq 1 1 eq 1 eq 1 eqd t 2 d t d t u , t+ ξ ω + ω = ω δɺɺ ɺ

( ) ( )d,eq 1 d 1S n , , S n ,ξ δ = ξ

( ) 2
d,eq 1 maxS n , , uξ δ =

SDOF Response Spectrum

Base Response Spectrum

Limit solutions
1) Point-like structure (A →→→→ 0)

2) Infinitely large structure (A →→→→ ∞∞∞∞ )

Multi-Degree-Of-Freedom system

( )d,eq eq,max 1 1S d n , ,= ξ δ

( ) ( ) ( ) ( )2 2 2
eq 1 1 eq 1 eq 1 eqd t 2 d t d t u , t+ ξ ω + ω = ω δɺɺ ɺ

( ) ( )d,eq 1 d 1S n , , S n ,ξ δ = ξ

( ) 2
d,eq 1 maxS n , , uξ δ =

SDOF Response Spectrum

Base Response Spectrum
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ξ = 0.002

( )d,eq eq,max 0S d n , ,= ξ δ

( ) ( ) ( ) ( )2 2 2
eq 1 1 eq 1 eq 1 eqd t 2 d t d t u , t+ ξ ω + ω = ω δɺɺ ɺ

Multi-Degree-Of-Freedom system

SDOF Response Spectrum

Base Response Spectrum

δ

( )d,eq eq,max 0S d n , ,= ξ δ

ξ = 0.005

( ) ( ) ( ) ( )2 2 2
eq 1 1 eq 1 eq 1 eqd t 2 d t d t u , t+ ξ ω + ω = ω δɺɺ ɺ

Multi-Degree-Of-Freedom system

Base Response Spectrum

SDOF Response Spectrum

δ
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( )d,eq eq,max 0S d n , ,= ξ δ

ξ = 0.01

( ) ( ) ( ) ( )2 2 2
eq 1 1 eq 1 eq 1 eqd t 2 d t d t u , t+ ξ ω + ω = ω δɺɺ ɺ

Multi-Degree-Of-Freedom system

Base Response Spectrum

SDOF Response Spectrum

δ

( )d,eq eq,max 0S d n , ,= ξ δ

ξ = 0.02

( ) ( ) ( ) ( )2 2 2
eq 1 1 eq 1 eq 1 eqd t 2 d t d t u , t+ ξ ω + ω = ω δɺɺ ɺ

Multi-Degree-Of-Freedom system

Base Response Spectrum

SDOF Response Spectrum

δ
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( )d,eq eq,max 0S d n , ,= ξ δ

ξ = 0.05

( ) ( ) ( ) ( )2 2 2
eq 1 1 eq 1 eq 1 eqd t 2 d t d t u , t+ ξ ω + ω = ω δɺɺ ɺ

Multi-Degree-Of-Freedom system

Base Response Spectrum

SDOF Response Spectrum

δ

Thunderstorm response spectrum technique

( ) ( ) ( ) ( ) ( )2 2
d

1ˆ ˆf z v h z b z c z
2

= ρ α

1) Determine the peak thunderstorm velocity
2) Determine the thunderstorm velocity profile
3) Determine the peak thunderstorm force

v̂(h)
(z)α
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1) Determine the peak thunderstorm velocity
2) Determine the thunderstorm velocity profile
3) Determine the peak thunderstorm force

4) Determine the structural damping ξ
5) Determine the natural frequency n0
6) Determine the size parameter δ

Thunderstorm response spectrum technique

eq

kCh

u(h) (z )
δ =

α

v̂(h)
(z)α

( ) ( ) ( ) ( ) ( )2 2
d

1ˆ ˆf z v h z b z c z
2

= ρ α

1) Determine the peak thunderstorm velocity
2) Determine the thunderstorm velocity profile
3) Determine the peak thunderstorm force

4) Determine the structural damping ξ
5) Determine the natural frequency n0
6) Determine the size parameter δ

7) Determine the response spectrum

Thunderstorm response spectrum technique

eq

kCh

u(h) (z )
δ =

α

( )d,eq eq,max 0S d n , ,= ξ δ

v̂(h)
(z)α

( ) ( ) ( ) ( ) ( )2 2
d

1ˆ ˆf z v h z b z c z
2

= ρ α
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1) Determine the peak thunderstorm velocity
2) Determine the thunderstorm velocity profile
3) Determine the peak thunderstorm force

4) Determine the structural damping ξ
5) Determine the natural frequency n0
6) Determine the size parameter δ

7) Determine the response spectrum

8) Determine the equivalent static force

Thunderstorm response spectrum technique

eq

kCh

u(h) (z )
δ =

α

( )d,eq eq,max 0S d n , ,= ξ δ

eq d,eq
ˆf (z) f (z) S= ⋅

v̂(h)
(z)α

( ) ( ) ( ) ( ) ( )2 2
d

1ˆ ˆf z v h z b z c z
2

= ρ α

MONTE CARLO SIMULATION
Mediaset Tower, Cologno Monzese

Top displacement

Monte Carlo simulation x(h) = 5.84 cm

Response spectrum technique x(h) = 5.88 cm

In all cases, error less than 1%
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Thunderstorm monitoring, statistics
and loading of structures

Wind loading on structures

Reliability-based calibration of partial factors for 
the future evolution of EN 1990 for wind actions

CEN/TC250/WG7 – Delft, The Netherlands, February 17, 2015

DESIGN WIND VELOCITY

T

V
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DESIGN WIND VELOCITY

T

V

DESIGN WIND VELOCITY

T

V

Td

Vd
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Gomes & Vickery (1977/1978)

DESIGN WIND VELOCITY

T

V

Td

Vd

Wind
Data

Extra-tropical
Depressions

Thunder-
storms

Gomes & Vickery (1977/1978)

DESIGN WIND VELOCITY
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Wind
Data

Extra-tropical
Depressions

Thunder-
storms

T

V

T

V

Gomes & Vickery (1977/1978)

DESIGN WIND VELOCITY

Wind
Data

Extra-tropical
Depressions

Thunder-
storms

T

V

T

V

T

V

Gomes & Vickery (1977/1978)

DESIGN WIND VELOCITY

( ) ( ) ( )V VD VTF v F v F v= ⋅



10/04/2015

56

Wind
Data

Extra-tropical
Depressions

Thunder-
storms
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V
Vd

TdGomes & Vickery (1977/1978)

DESIGN WIND VELOCITY

1
d V

d

1
V F 1
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−
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Wind
Data
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storms

T

V

T

V

T

V
Vd
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DESIGN WIND VELOCITY

Gomes & Vickery (1977/1978)
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Wind
Data

Extra-tropical
Depressions

Thunder-
storms

T

V

T

V

T

V
Vd

Td

DESIGN WIND VELOCITY

INDEPENDENT LOADINGS TECHNIQUE

WD

ETD

Th

Solari (2013), Solari et al. (2013, 2014)
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WD

ETD

Th

T

T

INDEPENDENT LOADINGS TECHNIQUE

Solari (2013), Solari et al. (2013, 2014)

V

V̂

WD

ETD

Th

T

TTTd

TDd

INDEPENDENT LOADINGS TECHNIQUE

Solari (2013), Solari et al. (2013, 2014)

V̂

V

DdV

TdV̂
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WD

ETD

Th

T

T

Wind
loading
No. 1

Wind
loading
No. 2

INDEPENDENT LOADINGS TECHNIQUE

Solari (2013), Solari et al. (2013, 2014)

V

DdV

V̂

TdV̂

TDd

TTd

WD

ETD

Th

T

T

GdD

QDd

INDEPENDENT LOADINGS TECHNIQUE

Solari (2013), Solari et al. (2013, 2014)

2
Dd Dd dD

1
Q V G

2
= ρ ⋅Equivalent static pressure

V

DdV

V̂

TdV̂

TDd

TTd
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WD

ETD

Th

T

T

GdD

<SdT>

QDd

QTd

INDEPENDENT LOADINGS TECHNIQUE

Solari (2013), Solari et al. (2013, 2014)

2
Dd Dd dD

1
Q V G

2
= ρ ⋅Equivalent static pressure

2
Td Td dT

1 ˆQ V S
2

= ρ ⋅

V

DdV

V̂

TdV̂

TDd

TTd

INDEPENDENT LOADINGS TECHNIQUE

There are several reasons that robustly support the application 
of the independent (wind) loadings technique:
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INDEPENDENT LOADINGS TECHNIQUE

There are several reasons that robustly support the application 
of the independent (wind) loadings technique:

1) Different wind events are endowed with different velocity 
profiles 

THUNDERSTORM DEPRESSION

INDEPENDENT LOADINGS TECHNIQUE

There are several reasons that robustly support the application 
of the independent (wind) loadings technique:

2) They are characterized by different parameterization rules for 
roughness length, topography and thermal stratification that 
lead to different transferring tools from one site to another

DEPRESSION
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INDEPENDENT LOADINGS TECHNIQUE

There are several reasons that robustly support the application 
of the independent (wind) loadings technique:

3) The different stationary/non-stationary and Gaussian/non-
Gaussian character of wind velocity causes different 
structural responses

DEPRESSION        THUNDERSTORM 

INDEPENDENT LOADINGS TECHNIQUE

There are several reasons that robustly support the application 
of the independent (wind) loadings technique:

4) The application of directional coefficients calibrated for 
depressions to thunderstorms distorts reality and forces the 
application of related concepts and rules outside their correct 
domain 

DEPRESSION        THUNDERSTORM
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INDEPENDENT LOADINGS TECHNIQUE

There are several reasons that robustly support the application 
of the independent (wind) loadings technique:

5) Different wind events have different distributions, extensions 
and durations that imply different partial safety factors and 
different combination coefficients

F G1 1 G2 2 P Q1 k1 Q2 02 k2C G G P Q Q= γ ⋅ + γ ⋅ + γ ⋅ + γ ⋅ + γ ⋅ ψ ⋅ +

Solari (2013), Solari et al. (2013, 2014)

INDEPENDENT LOADINGS TECHNIQUE

Based upon the above properties the Independent Loading 
Technique involves several advantages:

Solari (2013), Solari et al. (2013, 2014)
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INDEPENDENT LOADINGS TECHNIQUE

Based upon the above properties the Independent Loading
Technique involves several advantages:

1. It provides an appropriate representation and evaluation of
each different wind phenomenon. 

Solari (2013), Solari et al. (2013, 2014)

INDEPENDENT LOADINGS TECHNIQUE

Based upon the above properties the Independent Loading
Technique involves several advantages:

1. It provides an appropriate representation and evaluation of
each different wind phenomenon. 

2. It does not modify the spirit of engineering analyses and 
regulatory schemes currently in use. It simply adds some 
new rules in the classical spirit. 

Solari (2013), Solari et al. (2013, 2014)
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INDEPENDENT LOADINGS TECHNIQUE

Based upon the above properties the Independent Loading
Technique involves several advantages:

1. It provides an appropriate representation and evaluation of
each different wind phenomenon. 

2. It does not modify the spirit of engineering analyses and 
regulatory schemes currently in use. It simply adds some 
new rules in the classical spirit. 

3. It can be easily generalized to any number of wind loading
mechanisms (tornadoes, tropical ciclones, downslope winds, 
intermediate events, …), simply adding each of these as a 
new independent wind loading condition.

Solari (2013), Solari et al. (2013, 2014)

Livorno

La Spezia

v

Tyrrhenian Sea

“Wind & Ports” Project monitoring network

1
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Distribution of the maximum peak wind velocity

Anemometer 2
Port of La Spezia

Anemometer 3
Port of Livorno

thunderstorms

thunderstorms
depressions

depressions

intermediate events
intermediate events

LOW/MID-RISE STRUCTURES
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LOW/MID-RISE STRUCTURES

LOW/MID-RISE STRUCTURES
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HIGH-RISE STRUCTURES

http://www.windyn.com
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Workshop 
Reliability based calibration of partial factors for future 

evolution of EN 1990 for wind actions

Delft – 17-18 february 2015

Pietro Croce

Univ. of Pisa

Influence of extreme load models for wind
pressure on structural reliability
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Cases considered for extreme wind velocity

Gumbel distribution

3-parameters Weibull distribution

GPD

V=0.1

V=0.2

Wk/(Gk+Qk)
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Steel S275 – V=0.07
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β-Wk/(Gk+Qk) diagrams for various extreme maxima distributions for wind (V=0.1)
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β-Wk/(Gk+Qk) diagrams for various extreme maxima distributions for wind (V=0.2)
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Conclusions

Reliability decreases when the wind action is very high

Reliability depends on the distribution assumed for extreme maxima

Wind pressure model is still an open question (each relevant

coefficient needs a deep discussion)

Thank you for your attention



10/04/2015

75

10-04-2015 149

Wind actions on structures

Uncertainties and bias of Eurocode estimates 

10-04-2015 149

JCSS
Joint Committee 
on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Terrain:

Wind at low height

Mechanical response:

Wind pressure to 

structural response

Wind climate:

Global wind

Aerodynamic 

response:

Wind flow to pressure

Design criteria

Eurocode on wind actions

Wind load chain

•The first Eurocode on wind actions, ENV 1991-2-4:1995

•Revised Eurocode version, EN 1991-1-4:2005

JCSS
Joint Committee 
on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Wind exposure:

Exposure coefficient

Mechanical response:

Snow load to structural 

response

Terrain: 

Characteristic snow load
Snow load:

Shape and thermal 

coefficient

Design criteria

Eurocode on snow load

Snow load chain

•The first Eurocode on snow loads, ENV 1991-2-3:1995

•Revised Eurocode version, EN 1991-1-3-2007

JCSS
Joint Committee 
on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Wind climate

Basic wind velocities in North Europe

National Annexes to EN 1991-1-4:2005ENV 1991-2-4:1995

JCSS
Joint Committee 
on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Wind climate

1950 1960 1970 1980 1990 2000 2010
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Year

V
el

oc
ity

 p
re

ss
ur

e 
ra

tio
,  q
1 /

 q
5

0 Site measurements
Linear trend

Annual extremes in Denmark, based on site 

measurements.

Climate changes?
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Terrain categories

Category 0

Category I

Category II

Category III

Category IV

JCSS
Joint Committee 
on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Which pressure coefficient  cpe provides a characteristic wind pressure calculated 

by we= cpe qp , in which qp is the characteristic peak velocity pressure?

Wind-induced pressures on a one layer façade
JCSS
Joint Committee 
on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Wind-induced pressures on a one layer façade

Pressure tap cluster on model

• For 1 m² loaded areas the measurements show larger suctions than the 

Eurocode value of -1.4 for facades. This may partly originate from the fact 

that each pressure tap has an area of less than 1 m².

• For 10 m² loaded areas the measurements show lower suctions than the 

Eurocode value of -1.2 for facades. Thus, the spatial averaging applied in the 

wind tunnel gives larger reductions than the Eurocode.

Recommended Eurocode procedure

JCSS
Joint Committee 
on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Experience from wind tunnel testing

The experience gained from a large number of wind tunnel tests carried out 

with models of a variety of different building geometries is as follows:

1. The Eurocode 1 m² pressure coefficients often underestimate the wind 

action measured in the wind tunnel. An underestimation of more than 

20% is often observed

2. The Eurocode 10 m² pressure coefficients often overestimate the wind 

action measured in the wind tunnel. An overestimation of more than 

20% is often observed.

3. The Eurocode global wind action often overestimates the wind action 

measured in the wind tunnel. Often the overestimation is of an order of 

at least 40%.

JCSS
Joint Committee 
on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Experience from wind tunnel testing
JCSS
Joint Committee 
on Structural 
Safety

1 10 Global

cpe,10

cpe,1

cpe

A [m2]0,1

0

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Wind-induced pressures on a one layer façade

UN-city in Copenhagen, Denmark

JCSS
Joint Committee 
on Structural 
Safety

Pressure coefficients at red circles

• 1 m2:  -1.6 to -1.85

• 10 m2: -1.3 to -1.45

1:200 wind tunnel scale model 

of the UN-city

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Wind-induced pressures on a one layer façade
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Facade West

Søndermarken in Copenhagen, Denmark

1:200 wind tunnel scale model 

of block building
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Wind-induced pressures on a two skin façade
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of block building in the large 

wind tunnel of SOH Wind 

Engineering in Vermont, USA
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Wind-induced global loads

refAfcdcscpqwF =

Characteristic wind load specified in EN 1991-1-4:2005

: Characteristic peak velocity pressure at reference  

height

: Structural factor which comprises of a size effect 

and a dynamic amplification effect 

: Force coefficient

: Reference area

pq

dcsc

fc

refA

JCSS
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Wind-induced global loads

SiteCover

1:75 wind tunnel scale 

model of SiteCover
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Wind-induced global loads

SiteCover

JCSS
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CAARC standard tall building model
JCSS
Joint Committee 
on Structural 
Safety

Federico Pastorino, M.Sc.

Giovanni Solari, Prof. 

University of Genova

Decomposition of the global along-wind equivalent static load.

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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CAARC standard tall building model
JCSS
Joint Committee 
on Structural 
Safety

Federico Pastorino, M.Sc.

Giovanni Solari, Prof. 

University of Genova

Values of the correlation between two representative pressure taps, 

respectively on the windward and leeward façades.

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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CAARC standard tall building model
JCSS
Joint Committee 
on Structural 
Safety

Federico Pastorino, M.Sc.

Giovanni Solari, Prof. 

University of Genova

Values of the correlation between the pressures integrated separately 

on the windward and leeward façades.

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Mechanical response

1. Influence lines or mode shapes with changing signs.

2. Vortex-induced vibrations.

3. Galloping-induced vibrations.

4. Aeroelastic effects for cross section 1:2, where vortex-

induced and galloping-induced vibrations interact.

JCSS
Joint Committee 
on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Vortex-induced vibrations

bd

m
Sc es

G ρ
δ2

=
2

2

b

m
Sc es

ρ
δ

=

Scruton number General non-dimensional 

mass-damping parameter

: Structural damping

: Mass of structure per unit length

: Air density

: Cross-wind width

: Along-wind depth 

sδ

em

ρ
b

d
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Vortex-induced vibrations

Tested cross sections

Measured vortex –induced vibrations

JCSS
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on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions

10-04-2015 172

Galloping and vortex-induced vibrations

GGeGCG abnScv /2=


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Galloping and vortex-induced vibrations
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Wind-induced vibrations of a 1:2 cross section at 

different mass-damping parameters

Aeroelastic effects for 1:2 cross section

Galloping and vortex-induced vibrations
JCSS
Joint Committee 
on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Design Criteria

Experimental arrangement for 

testing glass resistance as function 

of load duration

• Future codes are expected to focus much more on the structural 

resistance relevant for fluctuating wind effects. 

• Present Eurocode revision: focus area is wind loads relevant for 

structures, where their resistance increases for shorter load 

durations, e.g. glass panels.

JCSS
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Conclusion – Wind actions

• Further harmonisation.

• Building codes should be probability based, so data used in the 

codes should also be probability based.

• The analysis techniques should be consistent with the choices 

made for the level of safety in the building codes.

• The relation between averaging time and spatial averaging, and 

the choice of extreme value analysis should be consistent with 

the probabilistic approach applied.

• Flow conditions and measurements techniques should be known 

and be within the range of applicability of the codes.

JCSS
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Wind load distribution 

Fdsfebw JccccqF ⋅⋅⋅⋅=

JCSS
Joint Committee 
on Structural 
Safety
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bq ec fc dscc FJ

wF

Workshop CEN/TC250/WG7: Partial safety factors for wind actions

Snow load distribution 

sitek Jccss ⋅⋅⋅⋅= µ

JCSS
Joint Committee 
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ks ec tc iµ sJ

s

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Snow load distribution 
JCSS
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sitek Jccss ⋅⋅⋅⋅= µ

s

ks ec tc iµ sJ
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Uncertainty of shape coefficients
JCSS
Joint Committee 
on Structural 
Safety
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Mean and standard deviation of the roof shape coefficient for gabled roofs with different 

slopes for Swiss, Italian Apennine, Italian Dolomites, United Kingdom and German sites.

Commission of the European Communities

DGIII – D3

Scientific Support Activity in the Field of Structural Stability of Civil Engineering Works

Snow Loads

1997
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Comparison of distributions 
JCSS
Joint Committee 
on Structural 
Safety
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Wind

Snow

Snow

V ~ 40%

V ~ 70-80%

V ~ 100%

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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Thanks for your attention
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JCSS
Joint Committee 
on Structural 
Safety

Workshop CEN/TC250/WG7: Partial safety factors for wind actions
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RELIABILITY-BASED CALIBRATION OF PARTIAL 
FACTORS FOR THE DANISH NATIONAL

ANNEX TO EN1990

JOHN DALSGAARD SØRENSEN

Introduction

The partial factors in the Danish National Annexes for buildings have 
been chosen using a reliability-based approach

Main objectives and choices for the calibration

• To have as far as possible a uniform reliability with respect to

• Different types of materials (concrete, steel, timber, soil, ….)

• Different types of loads (permanent loads, wind loads, snow 
loads, imposed loads, …)

• Different load combinations (STR: design of structural 
components, EQU: static equilibrium and GEO: geotechnical 
design)

• …
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Introduction

• …

• To have a partial safety factor equal to 1.0 on permanent load in the 
load combination for ULS for design of structural components where 
variables loads are dominating.

• To have consequence classes that correspond to the safety classes 
used in the old Danish code DS409 (2008).

• To have the same basic load combinations and partial safety factors 
for geotechnical design as for design of structural components.

Load combinations in DK NA EN1990

Load combinations:

• STR and GEO:

• EQU:

• KFI factor on unfavourable loads:
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Load combinations in DK NA EN1990
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Example – ‘direct’ calibration of partial 
factors
Limit state equation:

Example – ‘direct’ calibration of partial 
factors

Partial factors:
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Example – calibration by Design value 
format method

Example - calibration by Design value 
format method
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Example - calibration by Design value 
format method

Reliability level – DK National Annex

ULS 1 year reference period

CC2

NKB: 1975 β = 4.3 (loads: Normal distributed)

JCSS β = 4.2

EN 1990:2002 β = 4.7

DS 409:1998 β = 4.8

EN 1990 Nat. Annex β = 4.3

JCSS PMC (2002):
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DK National Annex
Design value for resistance

DK National Annex
Design value for resistance
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DK National Annex

Uncertainty and partial factors

index 0 :  uncertainty related to production test data / laboratory tests

index p:  uncertainty related to difference between production / laboratory    
conditions and real structure

22
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DK National Annex
Computational model uncertainty - examples

small bias: 1.06

small COV: V20 =12%

large bias: 2.5

large COV: V20 =25%
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DK National Annex
Calibration material partial factors

Representative limit state equation:

z design parameter

R resistance: LogNormal

G permanent load: Normal: COV = 10%

Q annual max variable action: Gumbel: COV = 40%

α parameter between 0 and 1

( )QGzRg αα +−−= )1(

DK National Annex
Calibration material partial factors

Design equation:

(6.10a):

(6.10b):

NB: no bias included

( ) 0)1( =−−= UkGa
M

k
a G

R
zG γα

γ

( ) 0)1( =+−−= kQkGb
M

k
b QG

R
zG αγγα

γ
{ }ba zzz ,max=

2.1=Gaγ
0.1=Gbγ
5.1=Qγ
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DK National Annex
Calibration material partial factors

Partial factor  γM  is calibrated to the reliability index β = 4.3

1
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DK National Annex

Example: ‘Annual’ reliability index:

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1

β

α

steel

timber

• More information on the determination of γM and γR partial factors 
dependent upon strength parameters and calculation models

• Target reliability level: 
• Annual or lifetime? 
• Cost of safety measure
• Existing structures 

• Solve the ‘paradox’ problem for EQU – STR load combinations

• Develop a consistent basis for accounting for ‘hidden’ safety - bias - in 
calculation models for action effects (and resistances)

• Partial factors for fatigue accounting for uncertainty of fatigue loads and 
of inspections

Concluding remarks - challenges
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Thank you for your attention!
John Dalsgaard Sørensen

jds@civil.aau.dk    

Reliability analysis of a façade element 
under wind loading

prof.dr.ir. Raphaël Steenbergen
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Content presentation

Design according to EN 1991-1-4 and EN 1990

Reliability analysis of this design, full probabilistic analysis

Distribution function strength

statistical properties load parameters: wind stations + wind tunnel

model uncertainties

Evaluation of the resulting reliability

Façade element

Tall building

In city

Façade element 10 m2

z0=0.8m

vb=27m/s

30 m
30 m

120 m

100 m
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Characteristic wind load on element:  EN 1991-1-4
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Characteristic wind load on element:  EN 1991-1-4
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Characteristic wind load on element:  EN 1991-1-4

Characteristic wind load on element:  EN 1991-1-4
Table 7.2.1: External pressure coefficients for vertical walls of rectangular plan 
buildings 
 

Zone A B C D E 
h/d cpe,10 cpe,1 cpe,10 cpe,1 cpe,10 cpe,1 cpe,10 cpe,1 cpe,10 cpe,1 
5 -1,2 -1,4 -0,8 -1,1 -0,5 +0.8 +1,0 -0,7 
1 -1,2 -1,4 -0,8 -1,1 -0,5 +0,8 +1,0 -0,5 

< 0,25 -1,2 -1,4 -0,8 -1,1 -0,5 +0,7 +1,0 -0,3 
 

Note (i):  For intermediate values of h/d, linear interpolation should be used. 
Note (ii):  The values of table 7.2.1 also apply to walls of buildings with inclined roofs, such 

as duopitch and monopitch roofs. 
 
For buildings with h/d > 5, the total wind loading may be based on the provisions given in 
sections 7.6 to 7.8 and 7.9.2.[h1] 
 
(3)  In cases where the wind force on building structures is determined by application of 
the pressure coefficients cpe on windward and leeward side (zones D and E) of the building 
simultaneously, the lack of correlation of wind pressures between the windward and leeward 
side may be taken into account. For buildings with h/d≥  5 the resulting force is multiplied by 
1. For buildings with h/d ≤ 1, the resulting force is multiplied by 0,85. For intermediate values 
of h/d, linear interpolation may be applied. 
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Characteristic wind load on element:  EN 1991-1-4

Fw,char = 10*1459*0.8 =11675 N

m ( 120m) 1.1559 27 31.2 m/sv z= = ⋅ =

( ) ( )0

1 1
( ) 0.20

ln ln 120 0.8
I z

z z
= = =

[ ] 2 21
( ) 1 7 ( ) ( ) 1459 N/m

2p v mq z I z v zρ= + ⋅ ⋅ ⋅ ⋅ =

[ ]2
,

1
( ) 1 7 ( )

2W char m v peF A v z I z cρ= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅

Design wind load on element:  EN 1991-1-4 & EN 1990

Fw,char = 0.8*1459*10 =11675 N

Fw,d = γW*11675 = 1.5*11675 = 17512 N

(CC2)
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Distribution R

Design according to Rd=Sd=17512 N

R lognormally distributed V(R)=0.10

Design according to Eurocode/material factors:

P(R<Rd)=Φ(-αβ), with α=0.8 and β=3.8

Distribution R is known

Distribution wind load on façade element

A: deterministic

vb: distribution yearly maxima hourly averaged wind velocity: from 

Schiphol Airport (z0=0.03 m and h=10 m)

cr: translation to different roughness and different height: factor from 

Eurocode (assumed deterministic….)

cp: peak pressure coefficient: distribution from wind tunnel 

measurements

Model uncertainties (anemometer, wind tunnel, factors)

[ ] [ ]2 2 2 1
1 1

( ) 1 7 ( )7 ( ) ( )
2 2 v pm v r ebpeS A v z I z c A I z cvc zρ ρ= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅⋅
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Wind speed

gumbelplot Vmax,1j

α1 = 0.55 s/m
u1 = 20 m/s

Pressure coefficients Gumbel:
u3600s=1.64
α=8.78

Related to 
velocity 
pressure at 
roof height
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Reliability calculation

Z = R - mSS

S = 1/2 ρ cr
2 v2 cp

Variable Distribution par1 par2

R Lognormal µ=Rd*exp(0.8*3.8*0.1) V=0.10

Rd Det 17512 N

mS Normal µ=1.0 V=0.10

ρ Det 1.25 kg/m3

cr Det 1.198

v Gumbel u50y=20+ln50/0.55= 27.1m/s α=0.55 s/m

cp Gumbel u=1.64 α=8.78

Reliability calculation

Without model uncertainty:

β=2.80, 50 year

With model uncertainty:

β=2.68, 50 year

NB: αv=0.85!
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Reliability sufficient?

EN 1990, CC2: β=3.8

ISO 2394

Dutch National Annex EN 1990: βwind = βnormal -1.0

Reliability sufficient?

In order to satisfy β=3.8:

γW=2.15 needed
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Conclusions

Reliability assessment on the basis of

wind speed measurements, annual maxima (….fit?)

wind tunnel experiments (sensitivity for sampling time, Cooke, 

Kasperski, ….)

Hidden safeties captured

Translation to different roughness, wind velocity profile with height

Model uncertainties, use of windtunnel?

JCSS probabilistic model code update

3 calculations: A=1m2, A=10m2 (different positions) and global behaviour

Partial factors for wind actions 
considering time variant and time 

invariant components

Milan Holický
Czech Technical University in Prague

JCSS/CEN workshop on partial factor for wind actions at TU delft on 17 and 18 February 2015 224

Wind actions
Wind speed  distribution

Partial factors
Conclusions
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Wind action

JCSS/CEN workshop on partial factor for wind actions at TU delft on 17 and 18 February 2015

• The design wind action considered as a product of time 
variant and time invariant components

w = q C= v2	
ρ
�

C

– Wind speed v described by time variant probability 
models, Gumbel(µ,σ,1.14) or LN3(µ,σ,α) distribution.

– Components  C described by time invariant normal 
distribution N(µ,σ).

• Relevant statistical data are needed to improve 
probabilistic models for both wind speed v and time 
invariant component C.

225

Common extreme values distributions

JCSS/CEN workshop on partial factor for wind actions at TU delft on 17 and 18 February 2015
226

Wind speed

Skewness

Weibull Gumbel Fréchet
Type III Type I Type II
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Wind speed v
• Annual extremes (in accordance to available data)

– The mean µv ≈ 30 m/s (commonly 25 to 35 m/s)
– Standard deviation σv ≈ 3.5 m/s (commonly 2 to 5 m/s) 
– Skewness αv ≈ 0.3 (commonly 0 to 0.5)

• N -years extremes ΦN = Φ1
N for N = 50 and LN3

– The mean µv ≈ 38 m/s
– Standard d. σv≈1.6 m/s
– Skewness αv ≈ 0.6

• For Gumbel
– The mean µv ≈ 41 m/s
– Standard d. σv ≈ 3.5 m/s
– Skewness αv ≈ 1.14

σN

20 30 40 50
0

0.2

0.4

0.6

0.8

JCSS/CEN workshop on partial factor for wind actions at TU delft on 17 and 18 February 2015

LN3

Present study based on LN3

• Wind speed
– The mean wind speed speed µv1 = 30 m/s

– The standard deviation σv1 = 3,5 m/s

– The skewness αv1 from 0 to 1.2

• Time invariant component C
– The mean µC = 1 (not affecting the partial factor)

– The standard deviation σC = 0, 0.1, 0.2

– The skewness αC = 0

JCSS/CEN workshop on partial factor for wind actions at TU delft on 17 and 18 February 2015
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Procedure for determining partial factors

JCSS/CEN workshop on partial factor for wind actions at TU delft on 17 and 18 February 2015

• Parameters of the speed v1 and C (w = v2	
ρ
�

C)

• Characteristic wind speed vk , P(v > vk) = 0.98

• Characteristic wind pressure wk = vk
2 0.5 ρ µC

• N years extreme of wind speed vn, LN3(µvN ,σvN , αvN)

• Wind pressure w, LN3(µw ,σw , αw )

• The design pressure wd, P(w > wd) = Φ(αβ), α= − 0.7

• Partial factor γ = wd/wk, no hiden safety

229

0 0.5 1
1

1.5

2

2.5

three standard deviations of C 0, 0.1 and 0.2.

Wind partial factor γw for β = 3.8

γw

Skewness of wind speed αv

Coefficient of variation of C

0.2

0.1

0.0

JCSS/CEN workshop on wind actions at TU delft on 17 and 18 February 
2015
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0 0.5 1
0

0.5

1

1.5

Skewness of wind preasure αw

αw

Skewness of wind speed αv

Coefficient of variation of C

0.2

0.1

0.0

JCSS/CEN workshop on wind actions at TU delft on 17 and 18 February 
2015

Approximation using Gumbel distribution

JCSS/CEN workshop on partial factor for wind actions at TU delft on 17 and 18 February 2015

• Wind presure w = q C

• Time dependent component q = 0,5	�	�2

• Time independent component C

• Vw= (Vq
2 + VC

2)1/2

• An example
• Vq= 0.168, VC = 0,2, Vw @ 0.263

• Time-sensitivity factor

• �� =	
	


	�
	@	0.64

232
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Partial Factor Method

JCSS/CEN workshop on partial factor for wind actions at TU delft on 17 and 18 February 2015

• Gumbel equation modified using time-sensitivity factors to 
include variability of time invariant components.

•
��	

�
= 1 − �� 0.45 + 0.78 ln − ln 0.98

•
��	

�
=

1 − �� 0.45 − 0.78�� ln � + 0.78 ln − ln Φ 0.7 �

• !� =	
�"

#$

• %& =	
	'(

)'
	@	*. +,

233
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1.4

1.6

1.8

Partial Factor γQ

JCSS/CEN workshop on partial factor for wind actions at TU delft on 17 and 18 February 2015

Gumbel distribution, Vw = 0.263, N = 50 years 

γQ

234

αT = 0.64

αT = 1.00

β

β = 3.8
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Approximation for β = 3.8

0 0.1 0.2 0.3 0.4
1
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. .

Note. Calculation procedures applied in this sheet for determination of Gamma

γw

Coefficient Vw

Timme factorαT 1.0
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Partial Factors  γQ for selected β

JCSS/CEN workshop on partial factor for wind actions at TU delft on 17 and 18 February 2015

��

γw

β= 4.3

β= 3.8

β= 3.3

Variation with αT for Vw= 0.263, N = 50 years, Gumbel
distribution

236
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Conclusions

• Wind partial factors depend on both time variant 
and time invariant components, in particular on 
– skewness of wind speed and 
– Dispersion of time independent components

• Partial factors could be differentiated depending 
on local wind speed data and type of structures

• In common cases (for α = −0.7, β = 3.8) partial 
factors γw from 1.5 to 1.8 seem to adequate

• Additional relevant data to improve the 
probabilistic models for wind actions are needed.

0 0.2 0.4 0.6 0.8
1

1.2

1.4

1.6

1.8

.

Partial Factors  γQ for selected β

JCSS/CEN workshop on partial factor for wind actions at TU delft on 17 and 18 February 2015

��

γw

β= 3.8

β= 3.3

β= 3.0

Variation with αT for Vw= 0.41, N = 50 years, Gumbel distribution

238
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Mathcad 
sheet 

Wind Factors

Development and calibration of 

SANS 10160-3: Wind Actions

Presented by: Jacques Botha

On behalf of: Celeste Viljoen

Johan Retief
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Relationship: 

Eurocode & SA Wind Loading

• EN 1991-1-4:2005. Eurocode 1: Actions on 
structures, Part 1-4: General actions – wind 
actions.

Applied as reference for

• SANS 10160-3:2011. South African National 
Standard. Basis of structural design and actions 
for buildings and industrial structures. Part 3 
Wind Actions.

2015/04/10 241

Adaptation to SA Requirements

Following the selection of EN 1991-1-4 as reference, 
the following adaptations were applied:

1. Scope of application
– modified to buildings & standard design practice; 

• use of Eurocode beyond SANS scope

2. Mixed strong wind climate
– adjustment for thunderstorms

3. Terrain roughness
– classification & profiles

4. Calibration
– in terms of South African reliability models

2015/04/10 242
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1.  Scope of Application

• SANS 10160 limited to buildings and similar industrial 
structures

• Level of application limited  to general practice, excluding 
the need of specialised knowledge (wind engineering, in 
this case)
– Sufficient compatibility with EN 1991-1-4 for use of advanced 

methods within SA environment

Therefore scope of structures for SANS 10160-3:

a) Buildings/structures  - overall height of up to 100 m

b) elements of buildings and structures having a natural 
frequency greater than 5 Hz

c) chimneys with circular cross-sections, with heights of less 
than 60 m and a height to diameter ratio of less than 6,5

2015/04/10 243

2.  Strong Wind Climate

• Mixed strong wind climate

2015/04/10 244
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Strong Wind Climate – New 

Investigations

• Updated data records available for weather 

stations across the country

• Completely updated wind maps for gust wind 

& hourly mean

– Mixed climate model used (Gomes and Vickery)

• Final phase of development of revised design 

wind map (gust)

2015/04/10 245

Spatial Distribution of Weather 

Stations

2015/04/10 246

• January 1987 • January 2007
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Short Data Records

2015/04/10 247

Previous Wind Maps

2015/04/10 248

• Gust wind map • Hourly mean wind map
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Current Design Wind Map

2015/04/10 249

• Gust wind map converted to 10 min mean wind 
speed map using conversion factor (1,4)
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2015/04/10 250

• Gust wind map • Hourly mean wind map
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Proposed Updated Design 

Wind Map (Gust)

2015/04/10 251

3.  Terrain Roughness

• Previous SA standard terrain roughness 

procedures mostly maintained

• EN 1991-1-4 terrain categories were 

implemented with adjustments:

– Terrain Category 0 removed

– SA 1989 roughness lengths (z0) maintained

• SA 1989 velocity profiles were maintained (power law)

• SA exposure factors lower than Eurocode in few 

cases

2015/04/10 252
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Terrain Roughness Lengths

2015/04/10 253
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2015/04/10 254

• EN/SANS 2011 comparison • SANS 2011/SABS 1989 comparison
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4.  Calibration – General 

• Generally EN 1-1-4 give significantly higher values than 
previous SA 1989 procedures
– Implemented these where convincingly sound

– Adjusted down otherwise, where related to local 
conditions, in order to smooth transition from existing 
practice

• The following measures were taken accordingly, with 
some interim adjustments:
– Reflect local strong wind climate, 

• Launch investigation of strong wind climate

– Maintain terrain roughness representation

– Implement pressure coefficients resulting higher loads

– Use existing reliability model & target reliability (β = 3,0)
• Reassess reliability model

2015/04/10 255

Previous Calibration

• SANS partial factor for wind actions: γW = 1,3

– Derived from anomalously low value for design wind load 

bias (kW) in SANS wind load probability model (0,41) 

– Typical value for kW = 0,7
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2015/04/10 256
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Reliability Model Investigation

• Ongoing investigation

• Investigation overview:

– Develop new wind load probability model based on 

transparent reliability data

– Investigation limited to wind loads on regular 

industrial buildings

– Only primary wind load components at the most basic 

level of approximation are investigated

• Model uncertainty factors to be investigated at a later stage

– Global reliability of structures is considered

• Peak (component and cladding) loads excluded 
2015/04/10 257

Total Uncertainty of Wind Loading

(Davenport , 1983) 

- = ./.0.1.23/45
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Wind Load Components

• Primary wind load components under 

investigation:

– Time variant

• Free-field wind pressure

– Time invariant

• Pressure coefficients

• Terrain roughness factors

– Gust factors excluded due to nature of South 

African free-field wind data

2015/04/10 259

Primary Obstacle

Where to find data to determine the 

representative probability distributions of the 

time invariant components?
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Investigation Methodology

• Time variant component:

– New South African free-field wind data and revised 
wind map

• Time invariant components:

– Parametric comparative studies of wind load 
standards

• EN, SANS, BS NA EN, ASCE, AS/NZS, NBCC, ISO

– Results from wind tunnel and full-scale tests used to 
anchor theoretical results to observed values

• Ex. Texas Tech University full-scale experiments and 
subsequent related wind tunnel tests
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Comparative Study Summary

• Advantages:
– Allows investigation of wide range of structures and design 

situations

– Relatively easy generation of reliability “data” through 
automation of wind load standard procedures

– Allows indirect comparison of background information used to 
develop multiple wind load standards

• Disadvantages:
– Hidden uncertainties due to wind load standard development 

procedures

– Only describes the epistemic component of the wind load 
uncertainty

– Not a true estimation of the wind load component 
uncertainties, but rather a lower bound approximation

– Useless if not anchored to real world values
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Investigation Summary

• Progress:
– Methods  have been developed to determine South African 

free-field wind probability parameters using new data

– Wind load standard automation program has been developed

– Investigation of systematic bias of time invariant components is 
still ongoing

• Significant Preliminary Results:
– South African reliability model underestimates total wind load 

systematic bias

– Existing models underestimate variability of time invariant wind 
load components

• Preliminary terrain roughness CoV: 0,10

• Preliminary pressure coefficient CoV: 0,25

• Projected completion date is mid-2016
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Thank you


